Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
EClinicalMedicine ; 57: 101832, 2023 Mar.
Article in English | MEDLINE | ID: covidwho-2246026

ABSTRACT

Background: BGB-DXP593, a neutralising monoclonal antibody against SARS-CoV-2, has demonstrated strong activity in reducing viral RNA copy number in SARS-CoV-2-infected animal models. We aimed to examine the efficacy and safety of BGB-DXP593 in ambulatory patients with mild-to-moderate COVID-19. Methods: This global, randomised, double-blind, phase 2 study (ClinicalTrials.govNCT04551898) screened patients from 20 sites in Australia, Brazil, Mexico, South Africa, and the USA from December 2, 2020, through January 25, 2021. Patients with a first-positive SARS-CoV-2 test (positive reverse transcription-polymerase chain reaction test or authorised antigen test) ≤3 days before screening and mild-to-moderate COVID-19 symptoms for ≤7 days before treatment were randomised 1:1:1:1 to receive a single intravenous infusion of BGB-DXP593 5, 15, or 30 mg/kg, or placebo. The primary endpoint was change from baseline to Day 8 in viral RNA copies/mL as measured in nasopharyngeal swabs. Secondary endpoints were hospitalisation rate due to worsening COVID-19 and treatment-emergent adverse events (TEAEs). A prespecified exploratory endpoint was change in viral RNA copy number in saliva. Findings: Relative to the natural rate of clearance as assessed in placebo-exposed patients (-3.12 log10 copies/mL), no significant differences in nasopharygneal viral RNA copy number changes were observed (-2.93 to -3.63 log10 copies/mL) by Day 8 in BGB-DXP593-treated patients. Reductions from baseline to Day 8 in saliva viral RNA copy number were larger with BGB-DXP593 5 mg/kg (-1.37 log10 copies/mL [90% confidence interval -2.14, -0.61]; nominal p = 0.003) and 15 mg/kg (-1.26 [-2.06, -0.46]; nominal p = 0.01) vs placebo, and differences favoring BGB-DXP593 were observed by Day 3, although not statistically significant; no difference from placebo was observed for BGB-DXP593 30 mg/kg (-0.71 [-1.45, 0.04]; nominal p = 0.12). Hospitalisation rate due to COVID-19 was numerically lower with BGB-DXP593 (pooled: 2/134 patients; 1.5%) vs placebo (2/47 patients; 4.3%), although not statistically significant. Incidence of TEAEs was similar across treatment groups. No TEAE led to treatment discontinuation. Five serious TEAEs occurred, all attributed to COVID-19 pneumonia. Interpretation: BGB-DXP593 was well tolerated. Although nasopharyngeal swab SARS-CoV-2 viral RNA copy number was not significantly decreased compared with placebo, viral RNA copy number was inconsistently reduced by Day 8 in saliva at some doses as low as 5 mg/kg. Funding: BeiGene, Ltd.

2.
MAbs ; 12(1): 1854149, 2020.
Article in English | MEDLINE | ID: covidwho-977345

ABSTRACT

Monoclonal antibody (mAb) therapy has been previously exploited for viral infections, such as respiratory syncytial virus pneumonia and Ebolavirus disease. In the ongoing COVID-19 pandemic, early signals of efficacy from convalescent plasma therapy have encouraged research and development of anti-SARS-CoV-2 mAbs. While many candidates are in preclinical development, we focus here on anti-SARS-CoV-2 neutralizing mAbs (or mAb cocktails) that represent the late-stage clinical pipeline, i.e., those currently in Phase 2 or Phase 3 clinical trials. We describe the structure, mechanism of action, and ongoing trials for VIR-7831, LY-CoV555, LY-CoV016, BGB-DXP593, REGN-COV2, and CT-P59. We speculate also on the next generation of these mAbs.


Subject(s)
Antibodies, Monoclonal/metabolism , Antibodies, Neutralizing/metabolism , Antibodies, Viral/metabolism , COVID-19/immunology , COVID-19/therapy , SARS-CoV-2/physiology , Antibodies, Monoclonal/genetics , Antibodies, Neutralizing/genetics , Antibodies, Viral/genetics , Clinical Trials, Phase II as Topic , Clinical Trials, Phase III as Topic , Humans , Immunization, Passive/methods , COVID-19 Serotherapy
SELECTION OF CITATIONS
SEARCH DETAIL